Exercise training initiated after the onset of diabetes preserves myocardial function: effects on expression of β-adrenoceptors

Author:

Bidasee Keshore R.,Zheng Hong,Shao Chun-Hong,Parbhu Sheeva K.,Rozanski George J.,Patel Kaushik P.

Abstract

The present study was undertaken to assess cardiac function and characterize β-adrenoceptor subtypes in hearts of diabetic rats that underwent exercise training (ExT) after the onset of diabetes. Type 1 diabetes was induced in male Sprague-Dawley rats using streptozotocin. Four weeks after induction, rats were randomly divided into two groups. One group was exercised trained for 3 wk while the other group remained sedentary. At the end of the protocol, cardiac parameters were assessed using M-mode echocardiography. A Millar catheter was also used to assess left ventricular hemodynamics with and without isoproterenol stimulation. β-Adrenoceptors were assessed using Western blots and [3H]dihydroalprenolol binding. After 7 wk of diabetes, heart rate decreased by 21%, fractional shortening by 20%, ejection fraction by 9%, and basal and isoproterenol-induced dP/d t by 35%. β1- and β2-adrenoceptor proteins were reduced by 60% and 40%, respectively, while β3-adrenoceptor protein increased by 125%. Ventricular homogenates from diabetic rats bound 52% less [3H]dihydroalprenolol, consistent with reductions in β1- and β2-adrenoceptors. Three weeks of ExT initiated 4 wk after the onset of diabetes minimized cardiac function loss. ExT also blunted loss of β1-adrenoceptor expression. Interestingly, ExT did not prevent diabetes-induced reduction in β2-adrenoceptor or the increase of β3-adrenoceptor expression. ExT also increased [3H]dihydroalprenolol binding, consistent with increased β1-adrenoceptor expression. These findings demonstrate for the first time that ExT initiated after the onset of diabetes blunts primarily β1-adrenoceptor expression loss, providing mechanistic insights for exercise-induced improvements in cardiac function.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3