Changes in cerebral oxygen saturation and cerebral blood flow velocity under mild +Gz hypergravity

Author:

Konishi Toru12,Kurazumi Takuya1,Kato Tomokazu1,Takko Chiharu1,Ogawa Yojiro1,Iwasaki Ken-ichi1

Affiliation:

1. Department of Social Medicine, Division of Hygiene, Nihon University School of Medicine, Tokyo, Japan

2. Aeromedical Laboratory, Japan Air Self-Defense Force, Ministry of Defense, Saitama, Japan

Abstract

We previously reported that cerebral blood flow (CBF) was reduced by even mild +Gz hypergravity. Regional cerebral oxygen saturation as measured by near-infrared spectroscopy (C-rSO2) has been widely used to detect cerebral ischemia in clinical practice. For example, decreases in C-rSO2reflect reduced CBF or arterial oxygen saturation. Thus it was hypothesized that C-rSO2would decrease in association with reduced CBF during mild hypergravity. To test this hypothesis, we measured CBF velocity by transcranial Doppler ultrasonography and C-rSO2during mild +Gz hypergravity while participants were in a sitting position. Among 17 male participants, 15 completed 21 min of exposure to +1.5 Gz generated by short-arm centrifuge. C-rSO2and mean CBF velocity in the middle cerebral artery (MCBFVMCA) during centrifugation were averaged every 5 min and compared with pre-hypergravity (+1.0 Gz). C-rSO2did not change significantly throughout centrifugation, although MCBFVMCAgradually decreased from the beginning (−1.2% at 0–5 min), and significantly decreased at 5–10 min (−4.8%), 10–15 min (−6.7%), and 15–20 min (−7.4%). Contrary to our hypothesis, decreases in C-rSO2were not detected, despite reductions in CBF velocity during hypergravity. Since some assumptions, such as unaltered arteriovenous volume ratio, hemoglobin concentration, extracranial blood flow, and brain activity, need to be satisfied to monitor cerebral ischemia by C-rSO2, the present results suggest that these necessary assumptions for near-infrared spectroscopy are not always applicable, and that cerebral oxygenation may not precisely reflect decreases in CBF under mild +Gz hypergravity.NEW & NOTEWORTHY To our knowledge, this is the first study to evaluate simultaneously cerebral oxygenation monitored by near-infrared spectroscopy and cerebral blood flow (CBF) monitored by transcranial Doppler under +1.5 Gz hypergravity. Contrary to our hypothesis, there was no significant correlation between CBF velocity and regional cerebral oxygen saturation (C-rSO2). However, an incomplete case nearly involving syncope suggests the possibility that C-rSO2can detect a remarkable decrease in CBF with development of presyncope during +Gz hypergravity.

Funder

Ministry of Education, Culture, Sports, Science, and Technology (MEXT)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3