Nicotinic acetylcholine receptors do not mediate excitatory transmission in young rat carotid body

Author:

Donnelly David F.1

Affiliation:

1. Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut

Abstract

Carotid body chemoreceptors transduce a decrease in arterial oxygen tension into increased action potential (AP) activity on the sinus nerve, which increases the drive to breathe. The mechanism by which AP activity increases is unresolved, but acetylcholine (ACh), acting through nicotinic receptors, is postulated to be a major contributor to nerve excitation based partly on the demonstration that pharmacological antagonism of nicotinic receptors reduces the afferent nerve response in some studies. However, most previous studies relied on indirect measures of chemoreceptor activity or utilized a recording configuration that is sensitive to AP morphology in addition to AP frequency. In the present study, single-unit AP activity was recorded from the soma of rat chemoreceptor neurons in vitro. The nicotinic blocker mecamylamine (50 μM) ablated the excitatory actions of exogenous ACh and increased, rather than decreased, AP activity during moderate hypoxia. At higher dosage (500 μM) AP height was reduced, conduction velocity slowed, and conduction failure occurred, especially during hypoxia, producing the appearance of a decreased response to hypoxia. Recovery from mecamylamine block was slow (>10 min). In contrast to mecamylamine, suramin, a P2X receptor blocker, reversibly inhibited the response to hypoxia, suggesting relatively free diffusion of drugs to the glomus cell/nerve synaptic site. These results strongly suggest that ACh acting through nicotinic receptors does not mediate excitatory transmission in rat carotid body and that previous results demonstrating such a role may have been partially influenced by changes in AP morphology or conduction failure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cholinergic Chemotransmission and Anesthetic Drug Effects at the Carotid Bodies;Molecules;2020-12-17

2. Peripheral chemoreceptors in fish: A brief history and a look ahead;Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology;2015-08

3. Sensing and surviving hypoxia in vertebrates;Annals of the New York Academy of Sciences;2015-05-08

4. Synaptic and paracrine mechanisms at carotid body arterial chemoreceptors;The Journal of Physiology;2014-04-14

5. Signal processing at mammalian carotid body chemoreceptors;Seminars in Cell & Developmental Biology;2013-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3