Myofascial force transmission: muscle relative position and length determine agonist and synergist muscle force

Author:

Huijing Peter A.12,Baan Guus C.1

Affiliation:

1. Instituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, 1081 BT Amsterdam; and

2. Integrated Biomedical Engineering for Restoration of Human Function, Instituut voor Biomedische Technologie, Faculteit Construerende Technische Wetenschappen, Universiteit Twente, 7522 NB Enschede, The Netherlands

Abstract

Equal proximal and distal lengthening of rat extensor digitorum longus (EDL) were studied. Tibialis anterior, extensor hallucis longus, and EDL were active maximally. The connective tissues around these muscle bellies were left intact. Proximal EDL forces differed from distal forces, indicating myofascial force transmission to structures other than the tendons. Higher EDL distal force was exerted (ratio ≈118%) after distal than after equal proximal lengthening. For proximal force, the reverse occurred (ratio ≈157%). Passive EDL force exerted at the lengthened end was 7–10 times the force exerted at the nonlengthened end. While kept at constant length, synergists (tibialis anterior + extensor hallucis longus: active muscle force difference ≈ −10%) significantly decreased in force by distal EDL lengthening, but not by proximal EDL lengthening. We conclude that force exerted at the tendon at the lengthened end of a muscle is higher because of the extra load imposed by myofascial force transmission on parts of the muscle belly. This is mediated by changes of the relative position of most parts of the lengthened muscle with respect to neighboring muscles and to compartment connective tissues. As a consequence, muscle relative position is a major codeterminant of muscle force for muscle with connectivity of its belly close to in vivo conditions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3