Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide

Author:

Shin Sang-jin,Fermor Beverley,Weinberg J. Brice,Pisetsky David S.,Guilak Farshid

Abstract

The meniscus is an intra-articular fibrocartilaginous structure that serves essential biomechanical roles in the knee. With injury or arthritis, the meniscus may be exposed to significant changes in its biochemical and biomechanical environments that likely contribute to the progression of joint disease. The goal of this study was to examine the influence of mechanical stress on matrix turnover in the meniscus in the presence of interleukin-1 (IL-1) and to determine the role of nitric oxide (NO) in these processes. Explants of porcine menisci were subjected to dynamic compressive stresses at 0.1 MPa for 24 h at 0.5 Hz with 1 ng/ml IL-1, and the synthesis of total protein, proteoglycan, and NO was measured. The effects of a nitric oxide synthase 2 (NOS2) inhibitor were determined. Dynamic compression significantly increased protein and proteoglycan synthesis by 68 and 58%, respectively, compared with uncompressed explants. This stimulatory effect of mechanical stress was prevented by the presence of IL-1 but was restored by specifically inhibiting NOS2. Release of proteoglycans into the medium was increased by IL-1 or mechanical compression and further enhanced by IL-1 and compression together. Stimulation of proteoglycan release in response to compression was dependent on NOS2 regardless of the presence of IL-1. These finding suggest that IL-1 may modulate the effects of mechanical stress on extracellular matrix turnover through a pathway that is dependent on NO.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3