Inflammatory cells do not decrease the ultimate tensile strength of intact tendons in vivo and in vitro: protective role of mechanical loading

Author:

Marsolais David,Duchesne Élise,Côté Claude H.,Frenette Jérôme

Abstract

Although inflammatory cells and their products are involved in various pathological processes, a possible role in tendon dysfunction has never been convincingly confirmed and extensively investigated. The goal of this study was to determine whether or not an acute inflammatory process deprived of mechanical trauma can induce nonspecific damages to intact collagen fibers. To induce leukocyte accumulation, carrageenan was injected into rat Achilles tendons. We first tested the effect of leukocyte recruitment on the concentrations or activities of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Second, we analyzed at the biochemical, histological, and biomechanical levels the impact of leukocyte invasion on tendons. Finally, collagen bundles isolated from rat-tail tendons were exposed in vitro to mechanical stress and/or inflammatory cells to determine if mechanical loading could protect tendons from the leukocyte proteolytic activity. Carrageenan-induced leukocyte accumulation was associated with an increased matrix metalloproteinase activity and a decreased content of tissue inhibitors of matrix metalloproteinases. However, hydroxyproline content and load to failure did not change significantly in these tendons. Interestingly, mechanical stress, when applied in vitro, protected collagen bundles from inflammatory cell-induced deterioration. Together, our results suggest that acute inflammation does not induce damages to intact and mechanically stressed collagen fibers. This protective effect would not rely on increased tissue inhibitors of matrix metalloproteinases content but would rather be conferred to the intrinsic resistance of mechanically loaded collagen fibers to proteolytic degradation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3