Oscillatory pressure wave transmission from the upper airway to the carotid artery

Author:

Howitt Lauren,Kairaitis Kristina,Kirkness Jason P.,Garlick Sarah R.,Wheatley John R.,Byth Karen,Amis Terence C.

Abstract

Snoring-associated vibration energy transmission from the upper airway to the carotid artery has been hypothesized as a potential atherosclerotic plaque initiating/rupturing event that may provide a pathogenic mechanism linking snoring and embolic stroke. We examined transmission of oscillatory pressure waves from the pharyngeal lumen to the common carotid artery wall and lumen in seven male, anesthetized, spontaneously breathing New Zealand White rabbits. Airflow was monitored via a pneumotachograph inserted in series in the intact trachea. Fifteen 20-s runs of, separately, 40-, 60-, and 90-Hz oscillatory pressure waves [pressure amplitude in the trachea (Ptramp), amplitude 2–20 cmH2O] were generated by a loudspeaker driven by a sine wave generator and amplifier and superimposed on tidal breathing via the cranial tracheal connector. Pressure transducer-tipped catheters measured pressure amplitudes in the tissues adjacent to the common carotid artery bifurcation (Pctiamp) and within the lumen (carotid sinus; Pcsamp). Data were analyzed using power spectrum analysis and linear mixed-effects statistical modeling. Both the frequency (f) and amplitude of the injected pressure wave influenced Pctiamp and Pcsamp, in that ln Pctiamp = 1.2(Ptramp) + 0.02(f) − 5.2, and ln Pcsamp = 0.6(Ptramp) + 0.02(f) − 4.9 (both P < 0.05). Across all frequencies tested, transfer of oscillatory pressure across the carotid artery wall was associated with an amplitude gain, as expressed by a Pcsamp-to-Pctiamp ratio of 1.8 ± 0.3 ( n = 6). Our findings confirm transmission of oscillatory pressure waves from the upper airway lumen to the peripharyngeal tissues and across the carotid artery wall to the lumen. Further studies are required to establish the role of this incident energy in the pathogenesis of carotid artery vascular disease.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3