Author:
Gustafsson T.,Ameln H.,Fischer H.,Sundberg C. J.,Timmons J. A.,Jansson E.
Abstract
VEGF-A contributes to muscle tissue angiogenesis following aerobic exercise training. The temporal response of the VEGF-A isoforms and their target receptors has not been comprehensively profiled in human skeletal muscle. We combined submaximal exercise with and without reduced leg blood flow to establish whether ischemia-induced metabolic stress was an important physiological stimuli responsible for regulating the VEGF-A system in humans. Nine healthy men performed two 45-min bouts of one-leg knee-extension exercise, with and without blood flow restriction. Muscle biopsies were obtained at rest and 2 and 6 h after exercise. Expression (mRNA) of the VEGF-A splice variants and related receptors [VEGF receptor (VEGFR)-1, VEGFR-2, and neuropilin-1] was determined by using qPCR. VEGF-Atotal expression increased more robustly after exercise with reduced blood flow, and initially this principally reflected an increase in VEGF-A165. Six hours after exercise, there was a relatively greater increase in VEGF-A189, and this response was not influenced by blood flow conditions. VEGFR-1 mRNA expression increased 2 h after exercise, and neuropilin-1 expression was transiently reduced, while all three receptors increased by 6 h. There was no evidence for the expression of the inhibitory VEGF-A165B variant in human skeletal muscle. Our study, reflecting both VEGF-A ligand and receptors, implicates metabolic perturbation as a regulator of human muscle angiogenesis and demonstrates that VEGF-A splice variants are distinctly regulated. Our findings also indicate that all three receptor genes exhibit different pretranslational regulation, in response to exercise in humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Reference53 articles.
1. Growth regulation of the vascular system: evidence for a metabolic hypothesis
2. Ameln H, Gustafsson T, Sundberg CJ, Poellinger L, Jansson E, Okamoto K, and Makino Y. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J In press.
3. Bates DO, Cui TG, Doughty JM, Winkler M, Sugiono M, Shields JD, Peat D, Gillatt D, and Harper SJ. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62: 4123–4131, 2002.
4. Exercise‐Induced Expression of Vascular Endothelial Growth Factor mRNA in Rat Skeletal Muscle is Dependent on Fibre Type
5. Angiogenic growth factor mRNA responses in muscle to a single bout of exercise
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献