Interactions between intracellular calcium and phosphate in intact mouse muscle during fatigue

Author:

Allen D. G.1,Clugston E.1,Petersen Y.2,Röder I. V.2,Chapman B.3,Rudolf R.2

Affiliation:

1. School of Medical Sciences and Bosch Institute and

2. Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany

3. School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia; and

Abstract

Fatigue was studied in intact tibialis anterior muscle of anesthetized mice. The distal tendon was detached and connected to a force transducer while blood flow continued normally. The muscle was stimulated with electrodes applied directly to the muscle surface and fatigued by repeated (1 per 4 s), brief (0.4 s), maximal (100-Hz stimulation frequency) tetani. Force declined monotonically to 49 ± 5% of the initial value with a half time of 36 ± 5 s and recovered to 86 ± 4% after 4 min. Intracellular phosphate concentration ([Pi]) was measured by31P-NMR on perchloric acid extracts of muscles. [Pi] increased during fatigue from 7.6 ± 1.7 to 16.0 ± 1.6 mmol/kg muscle wet wt and returned to control during recovery. Intracellular Ca2+was measured with cameleons whose plasmids had been transfected in the muscle 2 wk before the experiment. Yellow cameleon 2 was used to measure myoplasmic Ca2+, and D1ER was used to measure sarcoplasmic reticulum (SR) Ca2+. The myoplasmic Ca2+during tetani declined steadily during the period of fatigue and showed complete recovery over 4 min. The SR Ca2+also declined monotonically during fatigue and showed a partial recovery with rest. These results show that the initial phase of force decline is accompanied by a rise in [Pi] and a reduction in the tetanic myoplasmic Ca2+. We suggest that both changes contribute to the fatigue. A likely cause of the decline in tetanic myoplasmic Ca2+is precipitation of CaPiin the SR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3