Using near-infrared spectroscopy to measure cerebral metabolic rate of oxygen under multiple levels of arterial oxygenation in piglets

Author:

Tichauer Kenneth M.12,Elliott Jonathan T.12,Hadway Jennifer A.13,Lee David S.4,Lee Ting-Yim123,St. Lawrence Keith12

Affiliation:

1. Imaging Division, Lawson Health Research Institute,

2. Department of Medical Biophysics, University of Western Ontario,

3. Imaging Research Laboratories, Robarts Research Institute, and

4. Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

Abstract

Improving neurological care of neonates has been impeded by the absence of suitable techniques for measuring cerebral hemodynamics and energy metabolism at the bedside. Currently, near-infrared spectroscopy (NIRS) appears to be the technology best suited to fill this gap, and techniques have been proposed to measure both cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2). We have developed a fast and reliable bolus-tracking method of determining CMRO2 that combines measurements of CBF and cerebral venous oxygenation [venous oxygen saturation (CSvO2)]. However, this method has never been validated at different levels of arterial oxygenation [arterial oxygen saturation (SaO2)], which can be highly variable in the clinical setting. In this study, NIRS measurements of CBF, CSvO2, and CMRO2 were obtained over a range of SaO2 in newborn piglets ( n = 12); CSvO2 values measured directly from sagittal sinus blood samples were collected for validation. Two alternative NIRS methods that measure CSvO2 by manipulating venous oxygenation (i.e., head tilt and partial venous occlusion methods) were also employed for comparison. Statistically significant correlations were found between each NIRS technique and sagittal sinus blood oxygenation ( P < 0.05). Correlation slopes were 1.03 ( r = 0.91), 0.73 ( r = 0.73), and 0.73 ( r = 0.81) for the bolus-tracking, head tilt, and partial venous occlusion methods, respectively. The bolus-tracking technique displayed the best correlation under hyperoxic (SaO2 = 99.9 ± 0.03%) and normoxic (SaO2 = 86.9 ± 6.6%) conditions and was comparable to the other techniques under hypoxic conditions (SaO2 = 40.7 ± 9.9%). The reduced precision of the bolus-tracking method under hypoxia was attributed to errors in CSvO2 measurement that were magnified at low SaO2 levels. In conclusion, the bolus-tracking technique of measuring CSvO2, and therefore CMRO2, is accurate and robust for an SaO2 > 50% but provides reduced accuracy under more severe hypoxic levels.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3