Cardio-ventilatory coupling in young healthy resting subjects

Author:

Friedman Lee12,Dick Thomas E.13,Jacono Frank J.12,Loparo Kenneth A.4,Yeganeh Amir2,Fishman Mikkel1,Wilson Christopher G.3,Strohl Kingman P.12

Affiliation:

1. Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Case Western Reserve University, Cleveland;

2. Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland;

3. Departments of 3Neurosciences and

4. Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio

Abstract

In this work, cardio-ventilatory coupling (CVC) refers to the statistical relationship between the onset of either inspiration (I) or expiration (E) and the timing of heartbeats (R-waves) before and after these respiratory events. CVC was assessed in healthy, young (<45 yr), resting, supine subjects ( n = 19). Four intervals were analyzed: time from I-onset to both the prior R-wave (R-to-I) and the following R-wave (I-to-R), as well as time from E-onset to both the prior R-wave (R-to-E) and following R-wave (E-to-R). The degree of coupling was quantified in terms of transformed relative Shannon entropy (tRSE), and χ2 tests based on histograms of interval times from 200 breaths. Subjects were studied twice, from 5 to 27 days apart, and the test-retest reliability of CVC measures was computed. Several factors pointed to the relative importance of the R-to-I interval compared with other intervals. Coupling was significantly stronger for the R-to-I interval, coupling reliability was largest for the R-to-I interval, and only tRSE for the R-to-I interval was correlated with height, weight, and body surface area. The high test-retest reliability for CVC in the R-to-I interval provides support for the hypothesis that CVC strength is a subject trait. Across subjects, a peak ∼138 ms prior to I-onset was characteristic of CVC in the R-to-I interval, although individual subjects also had earlier peaks (longer R-to-I intervals). CVC for the R-to-I interval was unrelated to two separate measures of respiratory sinus arrhythmia (RSA), suggesting that these two forms of coupling (CVC and RSA) are independent.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3