Regulation of fat metabolism during resistance exercise in sedentary lean and obese men

Author:

Ormsbee Michael J.,Choi Myung Dong,Medlin Justin K.,Geyer Gabriel H.,Trantham Lauren H.,Dubis Gabriel S.,Hickner Robert C.

Abstract

The effect of acute resistance exercise (RE) on whole body energy expenditure (EE) and α2-adrenergic receptor (α2-AR) regulation of lipolysis in subcutaneous abdominal adipose tissue (SCAAT) was determined in sedentary lean (LN) and obese (OB) men. Lipolysis was monitored using microdialysis in 10 LN [body mass index (BMI) 20.9 ± 0.6] and 10 OB (BMI 36.2 ± 2.7) men before, during, and for 24 h after RE. EE was measured before and immediately after RE for 40 min. Changes in interstitial glycerol were measured in SCAAT with three microdialysis probes perfused with a control solution, phentolamine (α2-AR antagonist), or propranolol (β-AR antagonist). EE and fat oxidation (FOX) were significantly ( P < 0.001) elevated immediately post-RE compared with pre-RE in LN and OB subjects, with no differences between groups. RE-induced increases in SCAAT glycerol concentrations from rest to peak exercise were greater in LN than in OB men in the control (LN 142.1 ± 30.8 vs. OB 65.4 ± 14.2%, P = 0.03) and phentolamine probes (LN 187.2 ± 29.6 vs. OB 66.7 ± 11.0%, P = 0.002). Perfusion of propranolol had no effect on interstitial glycerol concentrations over the time course of the experiment in either group. Plasma insulin concentrations were significantly lower ( P = 0.002) and plasma growth hormone (GH) was significantly higher ( P = 0.03) in LN compared with OB men. The mechanism behind RE contributing to improved body composition may in part be due to enhanced SCAAT lipolysis and improved EE and FOX in response to RE in LN and OB men. The blunted SCAAT lipolytic response to RE in OB compared with LN men is unrelated to RE-induced catecholamine activation of the antilipolytic α2-ARs and may be due to depressed GH in OB subjects.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3