Sustained preinspiratory cortical potentials during prolonged inspiratory threshold loading in humans

Author:

Tremoureux Lysandre1,Raux Mathieu1,Jutand Luce1,Similowski Thomas12

Affiliation:

1. Université Paris 6, ER10UPMC, Laboratoire de Physiopathologie Respiratoire, and

2. Assistance Publique-Hôpitaux de Paris, Service de Pneumologie et Réanimation, Groupe Hospitalier Pitié-Salpêtrière, Paris, France

Abstract

Humans can program and control movements, including breathing-related movements. On the electroencephalogram (EEG), this preparation is accompanied by a low-amplitude negativity starting ∼2.5 s before inspiration that is best known as a Bereitschaftspotential (BP). The presence of BPs has been described during the compensation of mechanical inspiratory loading, thus identifying a cortical involvement in the corresponding ventilatory behavior. The pathophysiological interpretation of this cortical involvement depends on its transient or enduring nature. This study addressed this issue by looking for BPs during sustained inspiratory loading (1 h). Nine healthy male volunteers were studied during unloaded quiet breathing and inspiratory threshold loading (with unloaded expiration). Analyses of EEG signal and ventilatory variables were used to compare beginning and end of sessions. Inspiratory threshold loading caused ventilatory modifications that persisted, unchanged, for an hour. The presence of a BP at the beginning and end of a session was the most frequent occurrence (6 of 9 cases with a 17-cmH2O threshold load; 8 of 9 cases with a 23-cmH2O load). These observations support the hypothesis that the cerebral cortex is involved in the compensation of sustained experimental inspiratory loading. How this translates to respiratory disease involving acute changes in respiratory mechanics remains to be determined.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3