Hemodynamic impact of mitral prosthesis-patient mismatch on pulmonary hypertension: an in silico study

Author:

Tanné David,Kadem Lyes,Rieu Régis,Pibarot Philippe

Abstract

Recent clinical studies reported that prosthesis-patient mismatch (PPM) becomes clinically relevant when the effective orifice area (EOA) indexed by the body surface area (iEOA) is <1.2–1.25 cm2/m2. To examine the effect of PPM on transmitral pressure gradient and left atrial (LA) and pulmonary arterial (PA) pressures and to validate the PPM cutoff values, we used a lumped model to compute instantaneous pressures, volumes, and flows into the left-sided heart and the pulmonary and systemic circulations. We simulated hemodynamic conditions at low cardiac output, at rest, and at three levels of exercise. The iEOA was varied from 0.44 to 1.67 cm2/m2. We normalized the mean pressure gradient by the square of mean mitral flow indexed by the body surface area to determine at which cutoff values of iEOA the impact of PPM becomes hemodynamically significant. In vivo data were used to validate the numerical study, which shows that small values of iEOA (severe PPM) induce high PA pressure (residual PA hypertension) and contribute to its nonnormalization following a valve replacement, providing a justification for implementation of operative strategies to prevent PPM. Furthermore, we emphasize the major impact of pulmonary resistance and compliance on PA pressure. The model suggests also that the cutoff iEOA that should be used to define PPM at rest in the mitral position is ∼1.16 cm2/m2. At higher levels of exercise, the threshold for iEOA is rather close to 1.5 cm2/m2. Severe PPM should be considered when iEOA is <0.94 cm2/m2 at rest.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3