Thermoregulatory responses to exercise at a fixed rate of heat production are not altered by acute hypoxia

Author:

Coombs Geoff B.1,Cramer Matthew N.12ORCID,Ravanelli Nicholas13,Imbeault Pascal1,Jay Ollie13ORCID

Affiliation:

1. School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ontario, Canada;

2. Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas and the University of Texas Southwestern Medical Center, Dallas, Texas; and

3. Thermal Ergonomics Laboratory, University of Sydney, Lidcombe, New South Wales, Australia

Abstract

This study sought to assess the within-subject influence of acute hypoxia on exercise-induced changes in core temperature and sweating. Eight participants [1.75 (0.06) m, 70.2 (6.8) kg, 25 (4) yr, 54 (8) ml·kg−1·min−1] completed 45 min of cycling, once in normoxia (NORM; [Formula: see text] = 0.21) and twice in hypoxia (HYP1/HYP2; [Formula: see text]= 0.13) at 34.4(0.2)°C, 46(3)% RH. These trials were designed to elicit 1) two distinctly different %V̇o2peak [NORM: 45 (8)% and HYP1: 62 (7)%] at the same heat production (Hprod) [NORM: 6.7 (0.6) W/kg and HYP1: 7.0 (0.5) W/kg]; and 2) the same %V̇o2peak [NORM: 45 (8)% and HYP2: 48 (5)%] with different Hprod [NORM: 6.7 (0.6) W/kg and HYP2: 5.5 (0.6) W/kg]. At a fixed %V̇o2peak, changes in rectal temperature (ΔTre) and changes in esophageal temperature (ΔTes) were greater at end-exercise in NORM [ΔTre: 0.76 (0.19)°C; ΔTes: 0.64 (0.22)°C] compared with HYP2 [ΔTre: 0.56 (0.22)°C, P < 0.01; ΔTes: 0.42 (0.21)°C, P < 0.01]. As a result of a greater Hprod ( P < 0.01) in normoxia, and therefore evaporative heat balance requirements, to maintain a similar %V̇o2peak compared with hypoxia, mean local sweat rates (LSR) from the forearm, upper back, and forehead were greater (all P < 0.01) in NORM [1.10 (0.20) mg·cm−2·min−1] compared with HYP2 [0.71 (0.19) mg·cm−2·min−1]. However, at a fixed Hprod, ΔTre [0.75 (0.24)°C; P = 0.77] and ΔTes [0.63 (0.29)°C; P = 0.69] were not different in HYP1, compared with NORM. Likewise, mean LSR [1.11 (0.20) mg·cm−2·min−1] was not different ( P = 0.84) in HYP1 compared with NORM. These data demonstrate, using a within-subjects design, that hypoxia does not independently influence thermoregulatory responses. Additionally, further evidence is provided to support that metabolic heat production, irrespective of %V̇o2peak, determines changes in core temperature and sweating during exercise. NEW & NOTEWORTHY Using a within-subject design, hypoxia does not independently alter core temperature and sweating during exercise at a fixed rate of heat production. These findings also further contribute to the development of a methodological framework for assessing differences in thermoregulatory responses to exercise between various populations and individuals. Using the combined environmental stressors of heat and hypoxia we conclusively demonstrate that exercise intensity relative to aerobic capacity (i.e., %V̇o2max) does not influence changes in thermoregulatory responses.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3