Shear elastic modulus can be used to estimate an index of individual muscle force during a submaximal isometric fatiguing contraction

Author:

Bouillard Killian1,Hug François1,Guével Arnaud1,Nordez Antoine1

Affiliation:

1. Laboratory Motricité, Interactions, Performance (EA 4334), UFR STAPS, University of Nantes, Nantes, France

Abstract

The present study was designed to determine whether fatigue alters the ability to estimate an index of individual muscle force from shear elastic modulus measurements ( experiment I), and to test the ability of this technique to highlight changes in load sharing within a redundant muscle group during an isometric fatiguing task ( experiment II). Twelve subjects participated in experiment I, which consisted of smooth linear torque ramps from 0 to 80% of maximal voluntary contraction (MVC) performed before and after an isometric fatigue protocol, beginning at 40% of MVC and stopped when the force production dropped below 30% of MVC. Although the relationships between modulus and torque were very similar for pre- and postfatigue [root mean square deviation (RMSdeviation) = 3.7 ± 2.6% of MVC], the relationships between electromyography activity level and torque were greatly altered by fatigue (RMSdeviation = 10.3 ± 2.6% of MVC). During the fatiguing contraction, shear elastic modulus provided a significantly lower RMSdeviation between measured torque and estimated torque than electromyography activity level (5.7 ± 0.9 vs. 15.3 ± 3.8% of MVC). Experiment II performed with eight participants consisted of an isometric knee extension at 25% of MVC sustained until exhaustion. Opposite changes in shear elastic modulus were observed between synergists (vastus medialis, vastus lateralis, and rectus femoris) of some participants, reflecting changes in load sharing. In conclusion, despite the fact that we did not directly estimate muscle force (in Newtons), this is the first demonstration of an experimental technique to accurately quantify relative changes in force in an individual human muscle during a fatiguing contraction.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3