Author:
Post Heiner,Kajstura Jan,Lei Biao,Sessa William C.,Byrne Barry,Anversa Piero,Hintze Thomas H.,Recchia Fabio A.
Abstract
The objective of this study was to assess the potential of adeno-associated virus (AAV)-mediated gene delivery into coronary microvessels in vivo in a large animal. Ten mongrel dogs were chronically instrumented and allowed to recover for 10 days. Dogs were reanesthetized, and the aorta was constricted by a hydraulic occluder, whereby left ventricular (LV) pressure increased by 30% and left circumflex coronary artery blood flow by 50%. Recombinant AAV (serotype 2, CMV enhancer/chicken β-actin promoter) encoding for green fluorescent protein (GFP) was injected as a bolus into the left atrium during aortic constriction at total titers of 1010or 1012infectious units. Dogs were followed for 2 ( n = 4)or4wk( n = 6). Hemodynamics or body weight did not change. In LV tissue slices, a fluorescein-labeled antibody to GFP stained endothelial and smooth muscle cells but was absent in myocytes. To quantify transduction, slices were then stained with antibodies against α-smooth muscle actin or von Willebrand factor. Approximately 4% of arterioles and 2% of microvessels stained positive for anti-GFP independent from viral titer or duration. By regression analyses, the percent of vessels transfected was proportional to the increase in LV systolic pressure during occlusion. AAV is a potential vector for gene transfer into the coronary microcirculation in large animals, including perhaps humans.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献