Influence of a single loading episode on gene expression in healing rat Achilles tendons

Author:

Eliasson Pernilla1,Andersson Therese1,Aspenberg Per1

Affiliation:

1. Orthopaedics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden

Abstract

Mechanical loading stimulates tendon healing via mechanisms that are largely unknown. Genes will be differently regulated in loaded healing tendons, compared with unloaded, just because of the fact that healing processes have been changed. To avoid such secondary effects and study the effect of loading per se, we therefore studied the gene expression response shortly after a single loading episode in otherwise unloaded healing tendons. The Achilles tendon was transected in 30 tail-suspended rats. The animals were let down from the suspension to load their tendons on a treadmill for 30 min once, 5 days after tendon transection. Gene expression was studied by Affymetrix microarray before and 3, 12, 24, and 48 h after loading. The strongest response in gene expression was seen 3 h after loading, when 150 genes were up- or downregulated (fold change ≥2, P ≤ 0.05). Twelve hours after loading, only three genes were upregulated, whereas 38 were downregulated. Fewer than seven genes were regulated after 24 and 48 h. Genes involved in the inflammatory response were strongly regulated at 3 and 12 h after loading; this included upregulation of iNOS, PGE synthase, and IL-1β. Also genes involved in wound healing/coagulation, angiogenesis, and production of reactive oxygen species were strongly regulated by loading. Microarray results were confirmed for 16 selected genes in a repeat experiment ( N = 30 rats) using real-time PCR. It was also confirmed that a single loading episode on day 5 increased the strength of the healing tendon on day 12. In conclusion, the fact that there were hardly any regulated genes 24 h after loading suggests that optimal stimulation of healing requires a mechanical loading stimulus every day.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3