Author:
Gong Ming C.,Arbogast Sandrine,Guo Zhenheng,Mathenia Jeremy,Su Wen,Reid Michael B.
Abstract
Phospholipase A2(PLA2) activity supports production of reactive oxygen species (ROS) by mammalian cells. In skeletal muscle, endogenous ROS modulate the force of muscle contraction. We tested the hypothesis that skeletal muscle cells constitutively express the calcium-independent PLA2(iPLA2) isoform and that iPLA2modulates both cytosolic oxidant activity and contractile function. Experiments utilized differentiated C2C12myotubes and a panel of striated muscles isolated from adult mice. Muscle preparations were processed for measurement of mRNA by real-time PCR, protein by immunoblot, cytosolic oxidant activity by the dichlorofluorescein oxidation assay, and contractile function by in vitro testing. We found that iPLA2was constitutively expressed by all muscles tested (myotubes, diaphragm, soleus, extensor digitorum longus, gastrocnemius, heart) and that mRNA and protein levels were generally similar among muscles. Selective iPLA2blockade by use of bromoenol lactone (10 μM) decreased cytosolic oxidant activity in myotubes and intact soleus muscle fibers. iPLA2blockade also inhibited contractile function of unfatigued soleus muscles, shifting the force-frequency relationship rightward and depressing force production during acute fatigue. Each of these changes could be reproduced by selective depletion of superoxide anions using superoxide dismutase (1 kU/ml). These findings suggest that constitutively expressed iPLA2modulates oxidant activity in skeletal muscle fibers by supporting ROS production, thereby influencing contractile properties and fatigue characteristics.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献