Exercise training normalizes ACE and ACE2 in the brain of rabbits with pacing-induced heart failure

Author:

Kar Sumit1,Gao Lie1,Zucker Irving H.1

Affiliation:

1. Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska

Abstract

Exercise training (EX) normalizes sympathetic outflow and plasma ANG II in chronic heart failure (CHF). The central mechanisms by which EX reduces this sympathoexcitatory state are unclear, but EX may alter components of the brain renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) may mediate an increase in sympathetic nerve activity (SNA). ACE2 metabolizes ANG II to ANG-(1–7), which may have antagonistic effects to ANG II. Little is known concerning the regulation of ACE and ACE2 in the brain and the effect of EX on these enzymes, especially in the CHF state. This study aimed to investigate the effects of EX on the regulation of ACE and ACE2 in the brain in an animal model of CHF. We hypothesized that the ratio of ACE to ACE2 would increase in CHF and would be reduced by EX. Experiments were performed on New Zealand White rabbits divided into the following groups: sham, sham + EX, CHF, and CHF + EX ( n = 5 rabbits/group). The cortex, cerebellum, medulla, hypothalamus, paraventricular nucleus (PVN), nucleus tractus solitarii (NTS), and rostral ventrolateral medulla (RVLM) were analyzed. ACE protein and mRNA expression in the cerebellum, medulla, hypothalamus, PVN, NTS, and RVLM were significantly upregulated in CHF rabbits (ratio of ACE to GAPDH: 0.3 ± 0.03 to 0.8 ± 0.10 in the RVLM, P < 0.05). EX normalized this upregulation compared with CHF (0.8 ± 0.1 to 0.4 ± 0.1 in the RVLM). ACE2 protein and mRNA expression decreased in CHF (ratio of ACE2 to GAPDH: 0.3 ± 0.02 to 0.1 ± 0.01 in the RVLM). EX increased ACE2 expression compared with CHF (0.1 ± 0.01 to 0.8 ± 0.1 in the RVLM). ACE2 was present in the cytoplasm of neurons and ACE in endothelial cells. These data suggest that the activation of the central RAS in animals with CHF involves an imbalance of ACE and ACE2 in regions of the brain that regulate autonomic function and that EX can reverse this imbalance.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3