Affiliation:
1. Laboratory of Neuromuscular Plasticity, Institut Fédératif de Recherche en Protéomique 118, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France;
2. Faculty of Basic Medicine, Lomonossov Moscow State University, 119899 Moscow, Russia
Abstract
The effects of 19 days of hypergravity (HG) were investigated on the biochemical and physiological properties of the slow soleus muscle and its fast agonist, the plantaris. HG was induced by rotational centrifugation that led to a 2-G gravity level. The HG rats were characterized by a slower body growth than control, whereas the soleus muscle mass was increased by 15%. Using electrophoretic techniques, we showed that the distribution of myosin heavy chain and troponin T isoforms was not modified after HG in both soleus and plantaris. In contrast, the isoform expression pattern of two troponin subunits, troponin I and troponin C, was changed in a slow-to-fast manner only in the soleus. From tension-pCa relationships, changes in Ca2+ activation threshold by 0.18 pCa unit indicated a decrease in Ca2+ sensitivity and an increase in the slope of the curve, attesting to a higher cooperativity along the thin filament after HG. Comparison of our HG data with previous results in microgravity conditions indicated that muscle characteristics, except muscle mass, did not evolve linearly from 0 to 2 G.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献