Acclimatory-phase specificity of gene expression during the course of heat acclimation and superimposed hypohydration in the rat hypothalamus

Author:

Schwimmer Hagit,Eli-Berchoer Luba,Horowitz Michal

Abstract

The induction of the heat-acclimated phenotype involves reprogramming the expression of genes encoding both constitutive and inducible proteins. In this investigation, we studied the global genomic response in the hypothalamus during heat acclimation, with and without combined hypohydration stress. Rats were acclimated for 2 days (STHA) or for 30 days (LTHA) at 34°C. Hypohydration (10% decrease in body weight) was attained by water deprivation. 32P-labeled RNA samples from the hypothalamus were hybridized onto cDNA Atlas array (Clontech no. 1.2) membranes. Clustering and functional analyses of the expression profile of a battery of genes representing various central regulatory functions of body homeostasis demonstrated a biphasic acclimation profile with a transient upregulation of genes encoding ion channels, transporters, and transmitter signaling upon STHA. After LTHA, most genes returned to their preacclimation expression levels. In both STHA and LTHA, genes encoding hormones and neuropeptides, linked with metabolic rate and food intake, were downregulated. This genomic profile, demonstrating an enhanced transcription of genes linked with neuronal excitability during STHA and enhanced metabolic efficiency upon LTHA, is consistent with our previously established integrative acclimation model. The response to hypohydration was characterized by an upregulation of a large number of genes primarily associated with the regulation of ion channels, cell volume, and neuronal excitability. During STHA, the response was transiently desensitized, recovering upon LTHA. We conclude that hypohydration overrides the heat acclimatory status. It is notable that STHA and hypohydration gene profiles are analogous with the physiological profile described in the response to various types of brain injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3