Author:
Hardin Brian J.,Campbell Kenneth S.,Smith Jeffrey D.,Arbogast Sandrine,Smith Jacqueline,Moylan Jennifer S.,Reid Michael B.
Abstract
Tumor necrosis factor-α (TNF) diminishes specific force of skeletal muscle. To address the mechanism of this response, we tested the hypothesis that TNF acts via the type 1 (TNFR1) receptor subtype to increase oxidant activity and thereby depress myofibrillar function. Experiments showed that a single intraperitoneal dose of TNF (100 μg/kg) increased cytosolic oxidant activity ( P < 0.05) and depressed maximal force of male ICR mouse diaphragm by ∼25% within 1 h, a deficit that persisted for 48 h. Pretreating animals with the antioxidant Trolox (10 mg/kg) lessened oxidant activity ( P < 0.05) and abolished contractile losses in TNF-treated muscle ( P < 0.05). Genetic TNFR1 deficiency prevented the rise in oxidant activity and fall in force stimulated by TNF; type 2 TNF receptor deficiency did not. TNF effects on muscle function were evident at the myofibrillar level. Chemically permeabilized muscle fibers from TNF-treated animals had lower maximal Ca2+-activated force ( P < 0.02) with no change in Ca2+ sensitivity or shortening velocity. We conclude that TNF acts via TNFR1 to stimulate oxidant activity and depress specific force. TNF effects on force are caused, at least in part, by decrements in function of calcium-activated myofibrillar proteins.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献