Effect of deep inspiration avoidance on ventilation heterogeneity and airway responsiveness in healthy adults

Author:

Chapman David G.123,Berend Norbert123,King Gregory G.1234,Salome Cheryl M.123

Affiliation:

1. Woolcock Institute of Medical Research, Sydney;

2. Cooperative Research Centre for Asthma and Airways, Sydney;

3. The University of Sydney, Sydney; and

4. Department of Respiratory Medicine, Royal North Shore Hospital, St. Leonards, New South Wales, Australia

Abstract

The mechanisms by which deep inspiration (DI) avoidance increases airway responsiveness in healthy subjects are not known. DI avoidance does not alter respiratory mechanics directly; however, computational modeling has predicted that DI avoidance would increase baseline ventilation heterogeneity. The aim was to determine if DI avoidance increased baseline ventilation heterogeneity and whether this correlated with the increase in airway responsiveness. Twelve healthy subjects had ventilation heterogeneity measured by multiple-breath nitrogen washout (MBNW) before and after 20 min of DI avoidance. This was followed by another 20-min period of DI avoidance before the inhalation of a single methacholine dose. The protocol was repeated on a separate day with the addition of five DIs at the end of each of the two periods of DI avoidance. Baseline ventilation heterogeneity in convection-dependent and diffusion-convection-dependent airways was calculated from MBNW. The response to methacholine was measured by the percent fall in forced expiratory volume in 1 s/forced vital capacity (FVC) (airway narrowing) and percent fall in FVC (airway closure). DI avoidance increased baseline diffusion-convection-dependent airways ( P = 0.02) but did not affect convection-dependent airways ( P = 0.9). DI avoidance increased both airway closure ( P = 0.002) and airway narrowing ( P = 0.02) during bronchial challenge. The increase in diffusion-convection-dependent airways due to DI avoidance did not correlate with the increase in either airway narrowing ( rs = 0.14) or airway closure ( rs = 0.12). These findings suggest that DI avoidance increases diffusion-convection-dependent ventilation heterogeneity that is not associated with the increase in airway responsiveness. We speculate that DI avoidance reduces surfactant release, which increases peripheral ventilation heterogeneity and also predisposes to peripheral airway closure.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asthma and Lung Mechanics;Comprehensive Physiology;2020-07-08

2. The role of heterogeneity in asthma: a structure‐to‐function perspective;Clinical and Translational Medicine;2017-08-03

3. Airway smooth muscle tone increases airway responsiveness in healthy young adults;American Journal of Physiology-Lung Cellular and Molecular Physiology;2017-03-01

4. Bronchodilatory effect of deep inspiration in freshly isolated sheep lungs;American Journal of Physiology-Lung Cellular and Molecular Physiology;2017-02-01

5. No effect of elevated operating lung volumes on airway function during variable workrate exercise in asthmatic humans;Journal of Applied Physiology;2016-05-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3