Influence of muscle metabolic heterogeneity in determining the V̇o2p kinetic response to ramp-incremental exercise

Author:

Keir Daniel A.12,Benson Alan P.3,Love Lorenzo K.12,Robertson Taylor C.12,Rossiter Harry B.43ORCID,Kowalchuk John M.125

Affiliation:

1. Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada;

2. School of Kinesiology, The University of Western Ontario, London, Ontario, Canada;

3. School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom

4. Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California; and

5. Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada;

Abstract

The pulmonary O2 uptake (V̇o2p) response to ramp-incremental (RI) exercise increases linearly with work rate (WR) after an early exponential phase, implying that a single time constant (τ) and gain (G) describe the response. However, variability in τ and G of V̇o2p kinetics to different step increments in WR is documented. We hypothesized that the “linear” V̇o2p-WR relationship during RI exercise results from the conflation between WR-dependent changes in τ and G. Nine men performed three or four repeats of RI exercise (30 W/min) and two step-incremental protocols consisting of four 60-W increments beginning from 20 W or 50 W. During testing, breath-by-breath V̇o2p was measured by mass spectrometry and volume turbine. For each individual, the V̇o2p RI response was characterized with exponential functions containing either constant or variable τ and G values. A relationship between τ and G vs. WR was determined from the step-incremental protocols to derive the variable model parameters. τ and G increased from 21 ± 5 to 98 ± 20 s and from 8.7 ± 0.6 to 12.0 ± 1.9 ml·min−1·W−1 for WRs of 20-230 W, respectively, and were best described by a second-order (τ) and a first-order (G) polynomial function of WR (lowest Akaike information criterion score). The sum of squared residuals was not different ( P > 0.05) when the V̇o2p RI response was characterized with either the constant or variable models, indicating that they described the response equally well. Results suggest that τ and G increase progressively with WR during RI exercise. Importantly, these relationships may conflate to produce a linear V̇o2p-WR response, emphasizing the influence of metabolic heterogeneity in determining the apparent V̇o2p-WR relationship during RI exercise.

Funder

National Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3