Effects of resistance exercise with and without creatine supplementation on gene expression and cell signaling in human skeletal muscle

Author:

Deldicque Louise,Atherton Philip,Patel Rekha,Theisen Daniel,Nielens Henri,Rennie Michael J.,Francaux Marc

Abstract

To test the hypothesis that creatine supplementation would enhance the anabolic responses of muscle cell signaling and gene expression to exercise, we studied nine subjects who received either creatine or a placebo (maltodextrin) for 5 days in a double-blind fashion before undergoing muscle biopsies: at rest, immediately after exercise (10 × 10 repetitions of one-leg extension at 80% 1 repetition maximum), and 24 and 72 h later (all in the morning after fasting overnight). Creatine supplementation decreased the phosphorylation state of protein kinase B (PKB) on Thr308 at rest by 60% ( P < 0.05) and that of eukaryotic initiation factor 4E-binding protein on Thr37/46 (4E-BP1) by 30% 24 h postexercise ( P < 0.05). Creatine increased mRNA for collagen 1 (α1), glucose transporter-4 (GLUT-4), and myosin heavy chain I at rest by 250%, 45%, and 80%, respectively, and myosin heavy chain IIA (MHCIIA) mRNA immediately after exercise by 70% (all P < 0.05). Immediately after exercise, and independent of creatine, mRNA for muscle atrophy F-box (MAFbx), MHCIIA, peroxisome proliferator-activated receptor γ coactivator-1α, and interleukin-6 were upregulated (60–350%; P < 0.05); the phosphorylation state of p38 both in the sarcoplasm and nucleus were increased (12- and 25-fold, respectively; both P < 0.05). Concurrently, the phosphorylation states of PKB (Thr308) and 4E-BP1 (Thr37/46) were decreased by 50% and 75%, respectively ( P < 0.05). Twenty-four hours postexercise, MAFbx, myostatin, and GLUT-4 mRNA expression decreased below preexercise values (−35 to −50%; P < 0.05); calpain 1 mRNA increased 70% 72 h postexercise ( P < 0.05) and at no other time. In conclusion, 5 days of creatine supplementation do not enhance anabolic signaling but increase the expression of certain targeted genes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3