Ultrasound-based testing of tendon mechanical properties: a critical evaluation

Author:

Seynnes O. R.1,Bojsen-Møller J.1,Albracht K.2,Arndt A3,Cronin N. J.4,Finni T.4,Magnusson S. P.5

Affiliation:

1. Norwegian School of Sport Sciences, Oslo, Norway;

2. Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany;

3. GIH, The Swedish School of Sport and Health Sciences, Stockholm, Sweden;

4. Neuromuscular Research Centre, Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; and

5. Institute of Sports Medicine, Copenhagen & Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark

Abstract

In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique of obtaining and relating tendon deformation to tensile force in vivo has been applied differently, depending on practical constraints or scientific points of view. Divergence can be seen in 1) methodological considerations, such as the choice of anatomical features to scan and to track, force measurements, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties. In doing so, our aim is to provide the reader with a qualitative analysis of ultrasound-based techniques. Finally, a list of recommendations is proposed for a number of selected issues.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3