Left ventricular sphericity index predicts systolic dysfunction in rats with experimental aortic regurgitation

Author:

Roscani Meliza Goi1,Polegato Bertha Fulan1,Minamoto Suzana Erico Tanni1,Lousada Ana Paula Mena1,Minicucci Marcos1,Azevedo Paula1,Matsubara Luiz Shiguero1,Matsubara Beatriz Bojikian1

Affiliation:

1. Department of Internal Medicine, Botucatu Medical School, University of Estadual Paulista (Universidade Estadual Paulista “Júlio de Mesquita Filho”), São Paulo, Brazil

Abstract

Although an increased left ventricular (LV) diastolic diameter (DD) and a decreased ejection fraction have been used as markers for the surgical replacement of an insufficient aortic valve, these signals may be observed when irreversible myocardium damage has already occurred. The aim of this study was to determine whether change in LV geometry predicts systolic dysfunction in experimental aortic regurgitation. Male Wistar rats underwent surgical acute aorta regurgitation (aorta regurgitation group; n = 23) or a sham operation (sham group; n = 12). After the procedure, serial transthoracic echocardiograms were performed at 1, 4, 8, and 16 wk. At the end of protocol, the LV, lungs, and liver were dissected and weighed. During the follow-up, no animal developed overt heart failure. There was a correlation between the LV sphericity index and reduced fractional shortening ( P < 0.001) over time. A multiple regression model showed that the LVDD-sphericity index association at 8 wk was a better predictor of decreased fractional shortening at week 16 ( R2 = 0.50; P < 0.001) than was the LVDD alone ( R2 = 0.39; P = 0.001). LV geometry associated with increased LVDD improved the prediction of systolic dysfunction in experimental aortic regurgitation.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3