Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction

Author:

Starnes Joseph W.,Barnes Brian D.,Olsen Marissa E.

Abstract

Exercise provides cardioprotection against ischemia-reperfusion injury, a process involving mitochondrial reactive oxygen species (ROS) generation and calcium overload. This study tested the hypotheses that isolated mitochondria from hearts of endurance-trained rats have decreased ROS production and improved tolerance against Ca2+-induced dysfunction. Male Fischer 344 rats were either sedentary (Sed, n = 8) or endurance exercise trained (ET, n = 11) by running on a treadmill for 16 wk (5 days/wk, 60 min/day, 25 m/min, 6° grade). Mitochondrial oxidative phosphorylation measures were determined with glutamate-malate or succinate as substrates, and H2O2production and permeability transition pore (PTP) opening were determined with succinate. All assays were carried out in the absence and presence of calcium. In response to 25 and 50 μM CaCl2, Sed and ET displayed similar decreases in state 3 respiration, respiratory control ratio, and ADP:O ratio. Ca2+-induced PTP opening was also similar. However, H2O2production by ET was lower than Sed ( P < 0.05) in the absence of calcium (323 ± 12 vs. 362 ± 11 pmol·min−1·mg protein−1) and the presence of 50 μM CaCl2(154 ± 3 vs. 197 ± 7 pmol·min−1·mg protein−1). Rotenone, which blocks electron flow from succinate to complex 1, reduced H2O2production and eliminated differences between ET and Sed. Mitochondrial superoxide dismutase and glutathione peroxidase were not affected by exercise. Catalase activity was extremely low but increased 49% in ET ( P < 0.05). In conclusion, exercise reduces ROS production in myocardial mitochondria through adaptations specific to complex 1 but does not improve mitochondrial tolerance to calcium overload.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3