Regulation of middle cerebral artery blood velocity during recovery from dynamic exercise in humans

Author:

Ogoh Shigehiko,Fisher James P.,Purkayastha Sushmita,Dawson Ellen A.,Fadel Paul J.,White Michael J.,Zhang Rong,Secher Niels H.,Raven Peter B.

Abstract

We sought to examine the regulation of cerebral blood flow during 10 min of recovery from mild, moderate, and heavy cycling exercise by measuring middle cerebral artery blood velocity (MCA V). Transfer function analyses between changes in arterial blood pressure and MCA V were used to assess the frequency components of dynamic cerebral autoregulation (CA). After mild and moderate exercise, the decreases in mean arterial pressure (MAP) and mean MCA V (MCA Vm) were small. However, following heavy exercise, MAP was rapidly and markedly reduced, whereas MCA Vm decreased slowly (−23 ± 4 mmHg and −4 ± 1 cm/s after 1 min for MAP and MCA Vm, respectively; means ± SE). Importantly, for each workload, the normalized low-frequency transfer function gain between MAP and MCA Vm remained unchanged from rest to exercise and during recovery, indicating a maintained dynamic CA. Similar results were found for the systolic blood pressure and systolic MCA V relationship. In contrast, the normalized low-frequency transfer function gain between diastolic blood pressure and diastolic MCA V (MCA Vd) increased from rest to exercise and remained elevated in the recovery period ( P < 0.05). However, MCA Vd was quite stable on the cessation of exercise. These findings suggest that MCA V is well maintained following mild to heavy dynamic exercise. However, the increased transfer function gain between diastolic blood pressure and MCA Vd suggests that dynamic CA becomes less effective in response to rapid decreases in blood pressure during the initial 10 min of recovery from dynamic exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3