AltitudeOmics: impaired pulmonary gas exchange efficiency and blunted ventilatory acclimatization in humans with patent foramen ovale after 16 days at 5,260 m

Author:

Elliott Jonathan E.1,Laurie Steven S.1,Kern Julia P.1,Beasley Kara M.1,Goodman Randall D.2,Kayser Bengt3,Subudhi Andrew W.45,Roach Robert C.4,Lovering Andrew T.1

Affiliation:

1. Department of Human Physiology, University of Oregon, Eugene, Oregon;

2. Oregon Heart and Vascular Institute, Echocardiography, Springfield, Oregon;

3. University of Lausanne, Department of Physiology and Institute of Sports Sciences, Lausanne, Switzerland;

4. Altitude Research Center, University of Colorado Anschutz Medical Campus, Denver, Colorado; and

5. Department of Biology, University of Colorado, Colorado Springs, Colorado

Abstract

A patent foramen ovale (PFO), present in ∼40% of the general population, is a potential source of right-to-left shunt that can impair pulmonary gas exchange efficiency [i.e., increase the alveolar-to-arterial Po2 difference (A-aDO2)]. Prior studies investigating human acclimatization to high-altitude with A-aDO2 as a key parameter have not investigated differences between subjects with (PFO+) or without a PFO (PFO−). We hypothesized that in PFO+ subjects A-aDO2 would not improve (i.e., decrease) after acclimatization to high altitude compared with PFO− subjects. Twenty-one (11 PFO+) healthy sea-level residents were studied at rest and during cycle ergometer exercise at the highest iso-workload achieved at sea level (SL), after acute transport to 5,260 m (ALT1), and again at 5,260 m after 16 days of high-altitude acclimatization (ALT16). In contrast to PFO− subjects, PFO+ subjects had 1) no improvement in A-aDO2 at rest and during exercise at ALT16 compared with ALT1, 2) no significant increase in resting alveolar ventilation, or alveolar Po2, at ALT16 compared with ALT1, and consequently had 3) an increased arterial Pco2 and decreased arterial Po2 and arterial O2 saturation at rest at ALT16. Furthermore, PFO+ subjects had an increased incidence of acute mountain sickness (AMS) at ALT1 concomitant with significantly lower peripheral O2 saturation (SpO2). These data suggest that PFO+ subjects have increased susceptibility to AMS when not taking prophylactic treatments, that right-to-left shunt through a PFO impairs pulmonary gas exchange efficiency even after acclimatization to high altitude, and that PFO+ subjects have blunted ventilatory acclimatization after 16 days at altitude compared with PFO− subjects.

Funder

Department of Defense

Giles F. Filley Memorial Award for Excellence in Respiratory Physiology and Medicine

Eugene and Clarissa Evonuk memorial graduate fellowship in exercise and environmental physiology

American heart association predoctoral fellowship

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3