Sweat from gland to skin surface: production, transport, and skin absorption

Author:

Gerrett Nicola1ORCID,Griggs Katy1,Redortier Bernard2,Voelcker Thomas2,Kondo Narihiko3,Havenith George1

Affiliation:

1. Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, Leicestershire, United Kingdom

2. Oxylane Research, Decathlon Campus, Villeneuve d’Ascq, Lille, France

3. Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan

Abstract

By combining galvanic skin conductance (GSC), stratum corneum hydration (HYD) and regional surface sweat rate (RSR) measurements at the arm, thigh, back and chest, we closely monitored the passage of sweat from gland to skin surface. Through a varied exercise-rest protocol, sweating was increased slowly and decreased in 16 male and female human participants (25.3 ± 4.7 yr, 174.6 ± 10.1 cm, 71.3 ± 12.0 kg, 53.0 ± 6.8 ml·kg−1·min−1). ∆GSC and HYD increased before RSR, indicating pre-secretory sweat gland activity and skin hydration. ∆GSC and HYD typically increased concomitantly during rest in a warm environment (30.1 ± 1.0°C, 30.0 ± 4.7% relative humidity) and only at the arm did ∆GSC increase before an increase in HYD. HYD increased before RSR, before sweat was visible on the skin, but not to full saturation, contradicting earlier hypotheses. Maximal skin hydration did occur, as demonstrated by a plateau in all regions. Post exercise rest resulted in a rapid decrease in HYD and RSR but a delayed decline in ∆GSC. Evidence for reabsorption of surface sweat into the skin following a decline in sweating, as hypothesized in the literature, was not found. This suggests that skin surface sweat, after sweating is decreased, may not diffuse back into the dermis, but is only evaporated. These data, showing distinctly different responses for the three measured variables, provide useful information about the fate of sweat from gland to surface that is relevant across numerous research fields (e.g., thermoregulation, dermatology, ergonomics and material design). NEW & NOTEWORTHY After sweat gland stimulation, sweat travels through the duct, penetrating the epidermis before appearing on the skin surface. We found that only submaximal stratum corneum hydration was required before surface sweating occurred. However, full hydration occurred only once sweat was on the surface. Once sweating reduces, surface sweat evaporation continues, but there is a delayed drying of the skin. This information is relevant across various research fields, including environmental ergonomics, dermatology, thermoregulation, and skin-interface interactions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3