An assessment of the autonomic nervous system in the electrohypersensitive population: a heart rate variability and skin conductance study

Author:

Andrianome Soafara12,Gobert Jonathan12,Hugueville Laurent3,Stéphan-Blanchard Erwan12,Telliez Frederic2,Selmaoui Brahim12

Affiliation:

1. Unité de toxicologie expérimentale TOXI-PériTox UMR-I 01, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France;

2. PériTOX, UPJV, Institut d’Ingénierie de la Santé-UFR de Médecine, Amiens, France

3. Centre National de la Recherche Scientifique, Centre MEG-EEG, CRICM et CENIR, UMR 7225, Paris, France; and

Abstract

The aim of the study was twofold: first, to compare the activity of the autonomic nervous system (ANS) between the population self-declared as electrohypersensitive (EHS) and their matched control individuals without intended exposure to electromagnetic fields (EMF). The second objective was to determine whether acute exposure to different radiofrequency signals modifies ANS activity in EHS. For that purpose, two different experiments were undertaken, in which ANS activity was assessed through heart rate variability (HRV) and skin conductance (SC). In the first experiment, a comparison between the EHS group ( n = 30) and the control group ( n = 25) showed that the EHS has an increased number of responses to auditory stimuli as measured by skin conductance activity, and that none of the short-term heart rate variability parameters differ between the two matched study groups. The second experiment, performed in a shielded chamber, involved 10 EHS from the first experiment. The volunteers participated in two different sessions (sham and exposure). The participants were consecutively exposed to four EMF signals (GSM 900, GSM 1800, DECT, and Wi-Fi) at environmental level (1 V/m). The experiment was double blinded and counterbalanced. The HRV variables studied did not differ between the two sessions. Concerning electrodermal activity, the data issued from skin conductance and tonic activity did not differ between the sessions, but showed a time variability. In conclusion, the HRV and SC profiles did not significantly differ between the EHS and control populations under no exposure. Exposure did not have an effect on the ANS parameters we have explored. NEW & NOTEWORTHY This study provided analysis on the skin conductance parameters using a newly developed method (peak/min, extraction of skin conductance responses) that had not been performed previously. Additionally, the skin conductance signal was decomposed, considering tonic and phasic activities to be a distinct compound. Moreover, this is the first time a study has been designed into two steps to understand whether the autonomic nervous system is disturbed in the EHS population.

Funder

ANSES

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3