Perinatal hyperoxic exposure reconfigures the central respiratory network contributing to intolerance to anoxia in newborn rat pups

Author:

Bierman Alexis M.1,Tankersley Clarke G.2,Wilson Christopher G.3,Chavez-Valdez Raul1,Gauda Estelle B.1

Affiliation:

1. Department of Pediatrics, Neonatology Research Laboratories, Johns Hopkins Medical Institutions, Baltimore, Maryland;

2. Department of Environmental Health Science, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and

3. Department of Pediatrics, Neonatology and Neurosciences, Case Western Reserve University, Cleveland, Ohio

Abstract

Perinatal exposure to hyperoxia (30–60% O2) alters the respiratory control system via modulation of peripheral arterial chemoreceptor development and function. Furthermore, hyperoxic exposure during the first two postnatal weeks of life can alternatively modulate the different phases of the hypoxic ventilatory response. Given the effects of perinatal hyperoxia, the aims of our study were 1) to determine the effect on survival time in response to lethal anoxic stimuli in rat pups and 2) to characterize the output of the isolated central respiratory network in response to acute hypoxic stimuli. We hypothesized that perinatal hyperoxic exposure would modify the neonatal rat ventilatory response to anoxia by affecting a central component of the respiratory network in addition to the maturation of the carotid body chemoreceptors. We found that animals continuously exposed to 60% oxygen up to age 5 days after parturition (P5) have reduced breathing frequency at baseline and within the first 10 min of a fatal anoxic challenge. Hyperoxic rat pups also have a shortened time to last gasp in response to anoxia that is not associated with lung injury or inflammation. This study is the first to demonstrate that these in vivo findings correlate with reduced phrenic burst frequency from the isolated brainstem ex vivo. Thus hyperoxic exposure reduced the phrenic burst frequency at baseline and in response to ex vivo anoxia. Importantly, our data suggest that perinatal hyperoxia alters ventilation and the response to anoxia at P5 in part by altering the frequency of phrenic bursts generated by the central respiratory network.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3