Invited Review: Understanding airway pathophysiology with computed tomograpy

Author:

Brown Robert H.,Mitzner Wayne

Abstract

Conventional pulmonary function tests are limited in the mechanistic insight that they can provide by the fact that they can only provide average measures of lung function. For example, a measurement of decreased expiratory flow assessed with conventional spirometry could result from narrowed large airways, narrowed small airways, closed airways, altered elasticity, or regional heterogeneities in parenchyma or airways. To examine specific mechanisms and pathology in the airways, a method is required that can actually look at specific individual airways. Over the past decade, several more direct methods of assessing specific mechanisms and structural alterations in normal airways and airway pathology in asthma have become available for such purposes. One such method is high-resolution computed tomography (HRCT), a method that allows the study of multiple individual airways during either contraction to closure or relaxation in real time, as well as changes in airway size with changes in lung volume. Although other imaging modalities have the potential to image airways in vivo, none presently has the convenience and the accessibility coupled with the resolution required to visualize the parenchymal airways in vivo. Although HRCT may never be widely utilized for routine measurements or screening, because of radiation exposure, cost issues, and a limited ability to follow changes over extended time periods, the method has distinct and unique advantages in quantifying the behavior of airways in vivo. In this mini-review, we focus on these capabilities of HRCT by briefly reviewing highlights of experimental results from several canine and human studies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3