Running training experience attenuates disuse atrophy in fast-twitch skeletal muscles of rats

Author:

Nakamura Keisuke1,Ohsawa Ikumi1,Masuzawa Ryo2,Konno Ryotaro1,Watanabe Atsuya2,Kawano Fuminori12

Affiliation:

1. Department of Sports and Health Science, Faculty of Human Health Science, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan;

2. Graduate School of Health Sciences, Matsumoto University, Niimura, Matsumoto City, Nagano, Japan

Abstract

Responsiveness to physiological stimuli, such as exercise and muscular inactivation, differs in individuals. However, the mechanisms responsible for these individual differences remain poorly understood. We tested whether a prior experience of exercise training affects the responses of skeletal muscles to unloading. Young rats were assigned to perform daily running training with a treadmill for 8 wk. After an additional 8 wk of normal habitation, the rats were hindlimb unloaded by tail suspension for 1 wk. Fast-twitch plantaris, gastrocnemius, and tibialis anterior muscles did not atrophy after unloading in rats with training experience, although soleus muscle lost weight similar to sedentary rats. We also analyzed the transcriptome in plantaris muscle with RNA sequencing followed by hierarchical clustering analysis and found that a subset of genes that were generally upregulated in sedentary rats after unloading were less responsive in rats with training experience. The distribution of histone 3 was diminished at the loci of these genes during the training period. Although the deposition of histone 3 was restored after an additional period of normal habitation, the incorporation of H3.3 variant was promoted in rats with training experience. This remodeling of nucleosomes closely correlated to the conformational changes of chromatin and suppressed gene expression in response to unloading. These results suggest that exercise training stimulated the early turnover of histone components, which may alter the responsiveness of gene transcription to physiological stimuli. NEW & NOTEWORTHY The present study demonstrates that disuse atrophy was suppressed in fast-twitch skeletal muscles of rats with training experience in early life. We also found a subset of genes that were less responsive to unloading in the muscle of rats with training experience. It was further determined that exercise training caused an early turnover of nucleosome components, which may alter the responsiveness of genes to stimulus in later life.

Funder

Japan Society for the Promotion of Science (JSPS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3