Biaxial distension of precision-cut lung slices

Author:

Dassow C.1,Wiechert L.2,Martin C.1,Schumann S.3,Müller-Newen G.4,Pack O.1,Guttmann J.3,Wall W. A.2,Uhlig S.1

Affiliation:

1. Institute of Pharmacology and Toxicology, Medical Faculty, RWTH Aachen University, Aachen;

2. Institute for Computational Mechanics, Technische Universität München, Garching;

3. Division of Experimental Anaesthesiology, University Medical Center Freiburg, Freiburg; and

4. Institute of Biochemistry, Medical Faculty, RWTH Aachen University, Aachen, Germany

Abstract

The mechanical forces acting on lung parenchyma during (mechanical) ventilation and its (patho)physiological consequences are currently under intense scrutiny. Several in vivo and cell culture models have been developed to study the pulmonary responses to mechanical stretch. While providing extremely useful information, these models do also suffer from limitations in being either too complex for detailed mechanical or mechanistic studies, or in being devoid of the full complexity present in vivo (e.g., different cell types and interstitial matrix). Therefore in the present study it was our aim to develop a new model, based on the biaxial stretching of precision-cut lung slices (PCLS). Single PCLS were mounted on a thin and flexible carrier membrane of polydimethylsiloxane (PDMS) in a bioreactor, and the membrane was stretched by applying varying pressures under static conditions. Distension of the membrane-PCLS construct was modeled via finite element simulation. According to this analysis, lung tissue was stretched by up to 38% in the latitudinal and by up to 44% in the longitudinal direction, resulting in alveolar distension similar to what has been described in intact lungs. Stretch for 5 min led to increased cellular calcium levels. Lung slices were stretched dynamically with a frequency of 15/min for 4 h without causing cell injury {3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test; live/dead straining}. These findings suggest that stretching of PCLS on PDMS-membranes may represent a useful model to investigate lung stretch in intact lung tissue in vitro for several hours.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3