Changes in lung volume and upper airway using MRI during application of nasal expiratory positive airway pressure in patients with sleep-disordered breathing

Author:

Braga C. W.1,Chen Q.2,Burschtin O. E.2,Rapoport D. M.2,Ayappa I.2

Affiliation:

1. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil; and

2. Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York

Abstract

Nasal expiratory positive airway pressure (nEPAP) delivered with a disposable device (Provent, Ventus Medical) has been shown to improve sleep-disordered breathing (SDB) in some subjects. Possible mechanisms of action are 1) increased functional residual capacity (FRC), producing tracheal traction and reducing upper airway (UA) collapsibility, and 2) passive dilatation of the airway by the expiratory pressure, carrying over into inspiration. Using MRI, we estimated change in FRC and ventilation, as well as UA cross-sectional area (CSA), in awake patients breathing on and off the nEPAP device. Ten patients with SDB underwent nocturnal polysomnography and MRI with and without nEPAP. Simultaneous images of the lung and UA were obtained at 6 images/s. Image sequences were obtained during mouth and nose breathing with and without the nEPAP device. The nEPAP device produced an end-expiratory pressure of 4–17 cmH2O. End-tidal Pco2rose from 39.7 ± 5.3 to 47.1 ± 6.0 Torr ( P < 0.01). Lung volume changes were estimated from sagittal MRI of the right lung. Changes in UA CSA were calculated from transverse MRI at the level of the pharynx above the epiglottis. FRC determined by MRI was well correlated to FRC determined by N2washout ( r = 0.76, P = 0.03). nEPAP resulted in a consistent increase in FRC (46 ± 29%, P < 0.001) and decrease in ventilation (50 ± 15%, P < 0.001), with no change in respiratory frequency. UA CSA at end expiration showed a trend to increase. During wakefulness, nEPAP caused significant hyperinflation, consistent with an increase in tracheal traction and a decrease in UA collapsibility. Direct imaging effects on the UA were less consistent, but there was a trend to dilatation. Finally, we showed significant hypoventilation and rise in Pco2during use of the nEPAP device during wakefulness and sleep. Thus, at least three mechanisms of action have the potential to contribute to the therapeutic effect of nEPAP on SDB.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3