Affiliation:
1. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil; and
2. Division of Pulmonary, Critical Care, and Sleep Medicine, New York University School of Medicine, New York, New York
Abstract
Nasal expiratory positive airway pressure (nEPAP) delivered with a disposable device (Provent, Ventus Medical) has been shown to improve sleep-disordered breathing (SDB) in some subjects. Possible mechanisms of action are 1) increased functional residual capacity (FRC), producing tracheal traction and reducing upper airway (UA) collapsibility, and 2) passive dilatation of the airway by the expiratory pressure, carrying over into inspiration. Using MRI, we estimated change in FRC and ventilation, as well as UA cross-sectional area (CSA), in awake patients breathing on and off the nEPAP device. Ten patients with SDB underwent nocturnal polysomnography and MRI with and without nEPAP. Simultaneous images of the lung and UA were obtained at 6 images/s. Image sequences were obtained during mouth and nose breathing with and without the nEPAP device. The nEPAP device produced an end-expiratory pressure of 4–17 cmH2O. End-tidal Pco2rose from 39.7 ± 5.3 to 47.1 ± 6.0 Torr ( P < 0.01). Lung volume changes were estimated from sagittal MRI of the right lung. Changes in UA CSA were calculated from transverse MRI at the level of the pharynx above the epiglottis. FRC determined by MRI was well correlated to FRC determined by N2washout ( r = 0.76, P = 0.03). nEPAP resulted in a consistent increase in FRC (46 ± 29%, P < 0.001) and decrease in ventilation (50 ± 15%, P < 0.001), with no change in respiratory frequency. UA CSA at end expiration showed a trend to increase. During wakefulness, nEPAP caused significant hyperinflation, consistent with an increase in tracheal traction and a decrease in UA collapsibility. Direct imaging effects on the UA were less consistent, but there was a trend to dilatation. Finally, we showed significant hypoventilation and rise in Pco2during use of the nEPAP device during wakefulness and sleep. Thus, at least three mechanisms of action have the potential to contribute to the therapeutic effect of nEPAP on SDB.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献