Mechanical properties of the latissimus dorsi muscle after cyclic training

Author:

Askew Graham N.1,Cox Valerie M.2,Altringham John D.1,Goldspink David F.3

Affiliation:

1. School of Biology, University of Leeds, Leeds LS2 9JT;

2. School of Natural and Environmental Sciences, Coventry University, Coventry CV1 5FB; and

3. Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 2ET, United Kingdom

Abstract

Cardiomyoplasty is a procedure developed to improve heart performance in patients suffering from congestive heart failure. The latissimus dorsi (LD) muscle is surgically wrapped around the failing ventricles and stimulated to contract in synchrony with the heart. The LD muscle is easily fatigued and as a result is unsuitable for cardiomyoplasty. For useful operation as a cardiac-assist device, the fatigue resistance of the LD muscle must be improved while retaining a high power output. The LD muscle of rabbits was subjected to a training regime in which cyclic work was performed. Training transformed the fiber-type composition from approximately equal proportions of fast oxidative glycolytic (FOG) and fast glycolytic (FG) fibers to one composed of almost entirely of FOG with no FG, which increased fatigue resistance while retaining rapid contraction kinetics. Muscle mass and cross-sectional area increased but power output decreased, relative to control muscles. This training regime represents a significant improvement in terms of preserving muscle mass and power compared with other training regimes, while enhancing fatigue resistance, although some fiber damage occurred. The power output of the trained LD muscle was calculated to be sufficient to deliver a significant level of assistance to a failing heart during cardiomyoplasty.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3