UBC-Nepal expedition: markedly lower cerebral blood flow in high-altitude Sherpa children compared with children residing at sea level

Author:

Flück Daniela1ORCID,Morris Laura E.1,Niroula Shailesh23,Tallon Christine M.1,Sherpa Kami T.3,Stembridge Mike4,Ainslie Philip N.1,McManus Ali M.1ORCID

Affiliation:

1. Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada;

2. Institute of Medicine, Tribhuvan University, Kirtipur, Nepal;

3. Khunde Hospital, Khunde, Nepal; and

4. Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom

Abstract

Developmental cerebral hemodynamic adaptations to chronic high-altitude exposure, such as in the Sherpa population, are largely unknown. To examine hemodynamic adaptations in the developing human brain, we assessed common carotid (CCA), internal carotid (ICA), and vertebral artery (VA) flow and middle cerebral artery (MCA) velocity in 25 (9.6 ± 1.0 yr old, 129 ± 9 cm, 27 ± 8 kg, 14 girls) Sherpa children (3,800 m, Nepal) and 25 (9.9 ± 0.7 yr old, 143 ± 7 cm, 34 ± 6 kg, 14 girls) age-matched sea level children (344 m, Canada) during supine rest. Resting gas exchange, blood pressure, oxygen saturation and heart rate were assessed. Despite comparable age, height and weight were lower (both P < 0.01) in Sherpa compared with sea level children. Mean arterial pressure, heart rate, and ventilation were similar, whereas oxygen saturation (95 ± 2 vs. 99 ± 1%, P < 0.01) and end-tidal Pco2 (24 ± 3 vs. 36 ± 3 Torr, P < 0.01) were lower in Sherpa children. Global cerebral blood flow was ∼30% lower in Sherpa compared with sea level children. This was reflected in a lower ICA flow (283 ± 108 vs. 333 ± 56 ml/min, P = 0.05), VA flow (78 ± 26 vs. 118 ± 35 ml/min, P < 0.05), and MCA velocity (72 ± 14 vs. 88 ± 14 cm/s, P < 0.01). CCA flow was similar between Sherpa and sea level children (425 ± 92 vs. 441 ± 81 ml/min, P = 0.52). Scaling flow and oxygen uptake for differences in vessel diameter and body size, respectively, led to the same findings. A lower cerebral blood flow in Sherpa children may reflect specific cerebral hemodynamic adaptations to chronic hypoxia. NEW & NOTEWORTHY Cerebral blood flow is lower in Sherpa children compared with children residing at sea level; this may reflect a cerebral hemodynamic pattern, potentially due to adaptation to a hypoxic environment.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3