Tolerance to central hypovolemia: the influence of oscillations in arterial pressure and cerebral blood velocity

Author:

Rickards Caroline A.1,Ryan Kathy L.2,Cooke William H.1,Convertino Victor A.2

Affiliation:

1. Department of Health and Kinesiology, University of Texas at San Antonio, San Antonio; and

2. US Army Institute of Surgical Research, Fort Sam Houston, Texas

Abstract

Higher oscillations of cerebral blood velocity and arterial pressure (AP) induced by breathing with inspiratory resistance are associated with delayed onset of symptoms and increased tolerance to central hypovolemia. We tested the hypothesis that subjects with high tolerance (HT) to central hypovolemia would display higher endogenous oscillations of cerebral blood velocity and AP at presyncope compared with subjects with low tolerance (LT). One-hundred thirty-five subjects were exposed to progressive lower body negative pressure (LBNP) until the presence of presyncopal symptoms. Subjects were classified as HT if they completed at least the −60-mmHg level of LBNP (93 subjects; LBNP time, 1,880 ± 259 s) and LT if they did not complete this level (42 subjects; LBNP time, 1,277 ± 199 s). Middle cerebral artery velocity (MCAv) was measured by transcranial Doppler, and AP was measured at the finger by photoplethysmography. Mean MCAv and mean arterial pressure (MAP) decreased progressively from baseline to presyncope for both LT and HT subjects ( P < 0.001). However, low frequency (0.04–0.15 Hz) oscillations of mean MCAv and MAP were higher at presyncope in HT subjects compared with LT subjects (MCAv: HT, 7.2 ± 0.7 vs. LT, 5.3 ± 0.6 (cm/s)2, P = 0.075; MAP: HT, 15.3 ± 1.4 vs. 7.9 ± 1.2 mmHg2, P < 0.001). Consistent with our previous findings using inspiratory resistance, high oscillations of mean MCAv and MAP are associated with HT to central hypovolemia.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3