Effects of different stresses on cardiac autonomic control and cardiovascular coupling

Author:

Xie Lin1,Liu Binbin1,Wang Xiaoni1,Mei Mengqi1,Li Mengjun1,Yu Xiaolin2,Zhang Jianbao1

Affiliation:

1. Key Laboratory of Biomedical Information Engineering of Education Ministry, Xi'an Jiaotong University, Xi'an, China; and

2. Department of Information Engineering, Officers College of CAPF, Chengdu, China

Abstract

The objective of this study was to investigate the impacts of different stresses on time-varying autonomic reactivity and cardiovascular coupling. In total, 25 male subjects were recruited. RR intervals (RRI), systolic and diastolic blood pressure (SBP, DBP), stroke volume (SV), cardiac output (CO), and systemic vascular resistance (SVR) values were collected during rest, mental arithmetic task (MAT), and cold pressor test (CPT). Baroreflex sensitivity (BRS) was derived using the transfer function method. Continuous wavelet transformation of RRI was used to describe the time-variant patterns of autonomic neural activities. Wavelet cross correlation and phase synchronization were used to estimate the amplitude and phase coupling between RRI and SBP. MAT was characterized by increased heart rate (HR), SBP, DBP, and CO with decreased BRS attributable to prolonged parasympathetic withdrawal. Moreover, cardiovascular coupling was disrupted in MAT. These results indicated that baroreflex was depressed, and the top-down system started to take action under mental stress. In CPT, SBP, DBP, and SVR increased significantly, whereas HR and BRS remained unchanged. The increase of sympathetic activity was transient, and cardiovascular coupling did not change in CPT. Intriguingly, the frequency of the maximum cross-correlation coefficient in the low-frequency band (0.04–0.15 Hz) was significantly decreased in CPT, which may be due to the change of resonance frequency of the baroreflex loop. NEW & NOTEWORTHY The study is the first to compare the time-variant pattern of autonomic nervous activities and cardiovascular coupling between the mental arithmetic task (MAT) and the cold pressor test (CPT). Our results demonstrated that MAT and CPT elicited different time-varying patterns of autonomic neural activities and cardiovascular synchronization. Both the amplitude and phase consistency of blood pressure and heart rate decreased in MAT. CPT may affect the harmonic frequency of the baroreflex loop.

Funder

National Natural Science Foundation of China (NSFC)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3