Author:
Christensen Britt,Dyrberg Eva,Aagaard Per,Enehjelm Susanne,Krogsgaard Michael,Kjær Michael,Langberg Henning
Abstract
The aim of the present study was to analyze how human tendon connective tissue responds to an ∼7-wk period of immobilization and a remobilization period of a similar length, in patients with unilateral ankle fracture, which is currently unknown. Calf muscle cross-sectional area (CSA) decreased by 15% (5,316 to 4,517 mm2) and strength by 54% (239 to 110 N·m) in the immobilized leg after 7 wk. During the 7-wk remobilization, the CSA increased by 9% (to 4,943 mm2) and strength by 37% (to 176 Nm). Achilles tendon CSA did not change significantly during either immobilization or remobilization. Local collagen turnover was measured as the peritendinous concentrations of NH2-terminal propeptide of type I collagen (PINP) and COOH-terminal telopeptide region of type I collagen (ICTP), markers thought to be indexes of type I collagen synthesis and degradation, respectively. Both markers were increased (PINP: 257 vs. 56 ng/ml; ICTP: 9.8 vs. 2.1 μg/l) in the immobilized leg compared with the control leg after the 7 wk of immobilization, and levels decreased again in the immobilized leg during the recovery period (PINP: 103 vs. 44 ng/ml; ICTP: 4.2 vs. 1.9 μg/l). A significant reduction in calf muscle CSA and strength was found in relation to 7 wk of immobilization. Immobilization increased both collagen synthesis and degradation in tendon near tissue. However, it cannot be excluded that the facture of the ankle in close proximity could have affected these data. Remobilization increased muscle size and strength and tendon synthesis and degradation decreased to baseline levels. These dynamic changes in tendon connective tissue turnover were not associated with macroscopic changes in tendon size.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献