Effect of nitric oxide on spinal evoked potentials and survival rate in rats with decompression sickness

Author:

Randsoe T.1,Meehan C. F.2,Broholm H.3,Hyldegaard O.1

Affiliation:

1. Laboratory of Hyperbaric Medicine, Department of Anaesthesiology, Centre of Head and Orthopaedics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark;

2. Department of Neuroscience and Pharmacology, Faculty of Health Science, Panum Institute, Copenhagen University, Copenhagen, Denmark; and

3. Department of Neuropathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark

Abstract

Nitric oxide (NO) releasing agents have, in experimental settings, been shown to decrease intravascular nitrogen bubble formation and to increase the survival rate during decompression sickness (DCS) from diving. The effect has been ascribed to a possible removal of preexisting micronuclei or an increased nitrogen washout on decompression through augmented blood flow rate. The present experiments were conducted to investigate whether a short- or long-acting NO donor [glycerol trinitrate (GTN) or isosorbide-5-mononitrate (ISMN), respectively] would offer the same protection against spinal cord DCS evaluated by means of spinal evoked potentials (SEPs). Anesthetized rats were decompressed from a 1-h hyperbaric air dive at 506.6 kPa (40 m of seawater) for 3 min and 17 s, and spinal cord conduction was studied by measurements of SEPs. Histological samples of the spinal cord were analyzed for lesions of DCS. In total, 58 rats were divided into 6 different treatment groups. The first three received either saline ( group 1), 300 mg/kg iv ISMN ( group 2), or 10 mg/kg ip GTN ( group 3) before compression. The last three received either 300 mg/kg iv ISMN ( group 4), 1 mg/kg iv GTN ( group 5), or 75 μg/kg iv GTN ( group 6) during the dive, before decompression. In all groups, decompression caused considerable intravascular bubble formation. The ISMN groups showed no difference compared with the control group, whereas the GTN groups showed a tendency toward faster SEP disappearance and shorter survival times. In conclusion, neither a short- nor long-acting NO donor had any protective effect against fatal DCS by intravenous bubble formation. This effect is most likely due to a fast ascent rate overriding the protective effects of NO, rather than the total inert tissue gas load.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Decompression illness: a comprehensive overview;Diving and Hyperbaric Medicine Journal;2024-03-31

2. Decompression illness: a comprehensive overview;DIVING HYPERB MED;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3