Pulmonary changes in a mouse model of combined burn and smoke inhalation-induced injury

Author:

Mizutani Akio,Enkhbaatar Perenlei,Esechie Aimalohi,Traber Lillian D.,Cox Robert A.,Hawkins Hal K.,Deyo Donald J.,Murakami Kazunori,Noguchi Takayuki,Traber Daniel L.

Abstract

The morbidity and mortality of burn victims increase when burn injury is combined with smoke inhalation. The goal of the present study was to develop a murine model of burn and smoke inhalation injury to more precisely reveal the mechanistic aspects of these pathological changes. The burn injury mouse group received a 40% total body surface area third-degree burn alone, the smoke inhalation injury mouse group received two 30-s exposures of cotton smoke alone, and the combined burn and smoke inhalation injury mouse group received both the burn and the smoke inhalation injury. Animal survival was monitored for 120 h. Survival rates in the burn injury group, the smoke inhalation injury group, and the combined injury group were 70%, 60%, and 30%, respectively. Mice that received combined burn and smoke injury developed greater lung damage as evidenced by histological changes (septal thickening and interstitial edema) and higher lung water content. These mice also displayed more severely impaired pulmonary gas exchange [arterial Po2(PaO2)/inspired O2fraction (FiO2) < 200]. Lung myeloperoxidase activity was significantly higher in burn and smoke-injured animals compared with the other three experimental groups. Plasma NO2/NO3, lung inducible nitric oxide synthase (iNOS) activity, and iNOS mRNA increased with injury; however, the burn and smoke injury group exhibited a higher response. Severity of burn and smoke inhalation injury was associated with more pronounced production of nitric oxide and accumulation of activated leukocytes in lung tissue. The murine model of burn and smoke inhalation injury allows us to better understand pathophysiological mechanisms underlying cardiopulmonary morbidity secondary to burn and smoke inhalation injury.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3