Contractile and Ca2+-handling properties of the right ventricular papillary muscle in the late-gestation sheep fetus

Author:

Spencer T. N.,Botting K. J.,Morrison J. L.,Posterino G. S.

Abstract

The force-generating capacity of cardiomyocytes rapidly changes during gestation and early postnatal life coinciding with a transition in cardiomyocyte nucleation in both mice and rats. Changes in nucleation, in turn, appear to coincide with important changes in the excitation-contraction coupling architecture. However, it is not clear whether similar changes are observed in other mammals in which this transition occurs prenatally, such as sheep. Using small (70–300 μM diameter) chemically skinned cardiomyocyte bundles from the right ventricular papillary muscle of sheep fetuses at 126–132 and 137–140 days (d) gestational age (GA), we aimed to examine whether changes in cardiomyocyte nucleation during late gestation coincided with developmental changes in excitation-contraction coupling parameters (e.g., Ca2+uptake, Ca2+release, and force development). All experiments were conducted at room temperature (23 ± 1°C). We found that the proportion of mononucleate cardiomyocytes decreased significantly with GA (126–132d, 45.7 ± 4.7%, n = 7; 137–140d, 32.8 ± 1.6%, n = 6; P < 0.05). When we then examined force development between the two groups, there was no significant difference in either the maximal Ca2+-activated force (6.73 ± 1.54 mN/mm2, n = 14 vs. 6.55 ± 1.25 mN/mm2, n = 7, respectively) or the Ca2+sensitivity of the contractile apparatus (pCa at 50% maximum Ca2+-activated force: 126–132d, 6.17 ± 0.06, n = 14; 137–140d, 6.24 ± 0.08, n = 7). However, sarcoplasmic reticulum (SR) Ca2+uptake rates (but not Ca2+release) increased with GA ( P < 0.05). These data reveal that during late gestation in sheep when there is a major transition in cardiomyocyte nucleation, SR Ca2+uptake rates increase, which would influence total SR Ca2+content and force production.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3