Author:
Mitchell Simon J.,Doolette David J.
Abstract
Inner ear decompression sickness has been strongly associated with the presence of right-to-left shunts. The implied involvement of intravascular bubbles shunted from venous to arterial circulations is inconsistent with the frequent absence of cerebral symptoms in these cases. If arterial bubbles reach the labyrinthine artery, they must also be distributing widely in the brain. This discrepancy could be explained by slower inert gas washout from the inner ear after diving and the consequent tendency for arterial bubbles entering this supersaturated territory to grow because of inward diffusion of gas. Published models for inner ear and brain inert gas kinetics were used to predict tissue gas tensions after an air dive to 4 atm absolute for 25 min. The models predict half-times for nitrogen washout of 8.8 min and 1.2 min for the inner ear and brain, respectively. The inner ear remains supersaturated with nitrogen for longer after diving than the brain, and in the simulated dive, for a period that corresponds with the latency of typical cases. It is therefore plausible that prolonged inner ear inert gas supersaturation contributes to the selective vulnerability of the inner ear to short latency decompression sickness in divers with right-to-left shunt.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献