Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans

Author:

Mackey Abigail L.,Bojsen-Moller Jens,Qvortrup Klaus,Langberg Henning,Suetta Charlotte,Kalliokoski Kari K.,Kjaer Michael,Magnusson S. Peter

Abstract

It is unknown whether muscle damage at the level of the sarcomere can be induced without lengthening contractions. To investigate this, we designed a study where seven young, healthy men underwent 30 min of repeated electrical stimulated contraction of m. gastrocnemius medialis, with the ankle and leg locked in a fixed position. Two muscle biopsies were collected 48 h later: one from the stimulated muscle and one from the contralateral leg as a control. The biopsies were analyzed immunohistochemically for inflammatory cell infiltration and intermediate filament disruption. Ultrastructural changes at the level of the z-lines were investigated by transmission electron microscopy. Blood samples were collected for measurement of creatine kinase activity, and muscle soreness was assessed in the days following stimulation. The biopsies from the stimulated muscle revealed macrophage infiltration and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation ( r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle soreness in all subjects, combined with a significant increase in creatine kinase activity ( P < 0.05), is indirectly suggestive of muscle damage, and the novel findings of the present study, i.e., 1) macrophages infiltration, 2) lack of desmin staining, and 3) z-line disruption, provide direct evidence of damage at the myofiber and sarcomere levels. These data support the hypothesis that muscle damage at the level of the sarcomere can be induced without lengthening muscle contractions.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3