Responses to pulsatile subretinal electric stimulation: effects of amplitude and duration

Author:

Lee Seung Woo12,Eddington Donald K.34,Fried Shelley I.12

Affiliation:

1. Center for Innovative Visual Rehabilitation, Veterans Affairs Boston Healthcare System, Boston, Massachusetts;

2. Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts;

3. Cochlear Implant Research Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts; and

4. Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts

Abstract

In working to improve the quality of visual percepts elicited by retinal prosthetics, considerable effort has been made to understand how retinal neurons respond to electric stimulation. Whereas responses arising from direct activation of retinal ganglion cells have been well studied, responses arising through indirect activation (e.g., secondary to activation of bipolar cells) are not as well understood. Here, we used cell-attached, patch-clamp recordings to measure the responses of rabbit ganglion cells in vitro to a wide range of stimulus-pulse parameters (amplitudes: 0–100 μA; durations: 0.1–50 ms), applied to a 400-μm-diameter, subretinal-stimulating electrode. The indirect responses generally consisted of multiple action potentials that were clustered into bursts, although the latency and number of spikes within a burst were highly variable. When different parameter pairs representing identical charge levels were compared, the shortest pulse durations generally elicited the most spikes. In addition, latencies were shortest, and jitter was lowest for short pulses. These findings suggest that short pulses are optimum for activation of presynaptic neurons, and therefore, short pulses are more effective for both direct as well as indirect activation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3