Neocortical Pyramidal Cells Respond as Integrate-and-Fire Neurons to In Vivo–Like Input Currents

Author:

Rauch Alexander1,La Camera Giancarlo1,Lüscher Hans-Rudolf1,Senn Walter1,Fusi Stefano1

Affiliation:

1. Institute of Physiology, University of Bern, 3012 Bern, Switzerland

Abstract

In the intact brain neurons are constantly exposed to intense synaptic activity. This heavy barrage of excitatory and inhibitory inputs was recreated in vitro by injecting a noisy current, generated as an Ornstein–Uhlenbeck process, into the soma of rat neocortical pyramidal cells. The response to such in vivo–like currents was studied systematically by analyzing the time development of the instantaneous spike frequency, and when possible, the stationary mean spike frequency as a function of both the mean and the variance of the input current. All cells responded with an in vivo–like action potential activity with stationary statistics that could be sustained throughout long stimulation intervals (tens of seconds), provided the frequencies were not too high. The temporal evolution of the response revealed the presence of mechanisms of fast and slow spike frequency adaptation, and a medium duration mechanism of facilitation. For strong input currents, the slow adaptation mechanism made the spike frequency response nonstationary. The minimal frequencies that caused strong slow adaptation (a decrease in the spike rate by more than 1 Hz/s), were in the range 30–80 Hz and depended on the pipette solution used. The stationary response function has been fitted by two simple models of integrate-and-fire neurons endowed with a frequency-dependent modification of the input current. This accounts for all the fast and slow mechanisms of adaptation and facilitation that determine the stationary response, and proved necessary to fit the model to the experimental data. The coefficient of variability of the interspike interval was also in part captured by the model neurons, by tuning the parameters of the model to match the mean spike frequencies only. We conclude that the integrate-and-fire model with spike-frequency–dependent adaptation/facilitation is an adequate model reduction of cortical cells when the mean spike-frequency response to in vivo–like currents with stationary statistics is considered.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3